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Ridgelets: a key to higher-dimensional
intermittency?

By Emmanuel J. Candès and David L. Donoho

Department of Statistics, Stanford University, Stanford, CA 94305–4065, USA

In dimensions two and higher, wavelets can efficiently represent only a small range
of the full diversity of interesting behaviour. In effect, wavelets are well adapted for
point-like phenomena, whereas in dimensions greater than one, interesting phenom-
ena can be organized along lines, hyperplanes and other non-point-like structures,
for which wavelets are poorly adapted.
We discuss in this paper a new subject, ridgelet analysis, which can effectively

deal with line-like phenomena in dimension 2, plane-like phenomena in dimension
3 and so on. It encompasses a collection of tools which all begin from the idea of
analysis by ridge functions ψ(u1x1 + · · ·+unxn) whose ridge profiles ψ are wavelets,
or alternatively from performing a wavelet analysis in the Radon domain.
The paper reviews recent work on the continuous ridgelet transform (CRT),

ridgelet frames, ridgelet orthonormal bases, ridgelets and edges and describes a new
notion of smoothness naturally attached to this new representation.

Keywords: Ridge functions; wavelets; singularities; edges;
Radon transform; nonlinear approximation

1. Introduction

This paper is part of a series around the theme—wavelets: a key to intermittent
information?. The title itself raises a fundamental question; we shall argue that
the answer is both no and yes. We say no because wavelets per se only address a
portion of the intermittency challenge; we intend to make clear how much larger
the question is than just the portion which wavelets can face effectively. Roughly
speaking, wavelets deal efficiently only with one type of intermittency—singularities
at points—and in higher dimensions there are many other kinds of intermittency—
singularities along lines, along hyperplanes, etc.—which wavelets do not deal with
efficiently. But we also say yes, because by using wavelets in a novel way, we have
been able to build new systems of representations—ridgelets—which are efficient at
many of the tasks where wavelets fail.
In this expository paper, we will primarily focus on the study of objects defined

in two-dimensional space since, on one hand, this case already exhibits the main
concepts underlying the ridgelet analysis and, on the other hand, it is a very prac-
tical setting because of the connection with image analysis. However, we will refer
to extensions to higher dimensions wherever it is conceptually straightforward to
do so.

Phil. Trans. R. Soc. Lond. A (1999) 357, 2495–2509
2495

c© 1999 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2496 E. J. Candès and D. L. Donoho

(a) Wavelets and point singularities

To begin, we call the reader’s attention to one of the really remarkable facts about
wavelet bases. Suppose that we have a function f(t) of a single real variable t ∈ [0, 1]
and that f is smooth apart from a discontinuity at a single point t0. For example,
let f(t) = t − 1{t>t0}. In some sense this is a very simple object, and we would
like to find an expansion that reveals its simplicity. However, in traditional types of
expansions, the representation of this object is quite complicated, involving contri-
butions from many terms. This is so of the Fourier representation; viewing [0, 1] as
the circle, we can calculate the appropriate Fourier series on [0, 1]; the number of the
Fourier coefficients of f exceeding 1/N in absolute value exceeds c · N as N → ∞,
for some positive constant c. It is true of traditional orthogonal series estimates; an
expansion of f in Legendre polynomials has at least c ·N coefficients exceeding 1/N .
In stark contrast, in a nice wavelet orthonormal basis (Daubechies 1988), such as
the Lemarié–Meyer inhomogeneous periodized wavelet basis, the number of coeffi-
cients exceeding 1/N in amplitude grows more slowly that Nρ for any positive ρ.
In effect, the singularity at t0 causes widespread effects throughout the Fourier and
Legendre representations; but the singularity causes highly localized or concentrated
effects to the wavelet representation. Alternately, we can say that in analysing an
object exhibiting punctuated smoothness, the wavelet coefficients are sparse, while the
coefficients of classical transforms are not sparse.
The potential for sparsity of wavelet representations has had a wide impact, both

in theory and in practice. It has a well-understood meaning for nonlinear approxima-
tion and for data compression of objects exhibiting punctuated smoothness (Donoho
1993): since the energy associated with the singularity is mostly concentrated in just a
few big coefficients, partial reconstruction using a relatively small number of wavelet
terms (the terms associated with the biggest wavelets coefficients) can give excel-
lent approximations. The recognition that wavelets deal successfully with functions
which are smooth away from singularities has led to a great deal of interest in their
applications in image coding, where a great deal of the important structure consists
of singularities—namely, edges. Wavelet-based coders have found wide application
in various ‘niche’ data-compression applications, and are now being considered for
inclusion in the JPEG-2000 still-picture data-compression standard.

(b) Singularities along lines

Unfortunately some claims for wavelets have been overstated, and wavelets are
sometimes being used for applications well outside their actual domain of expertise.
To understand this point requires a more careful look at the notion of singularity.
A function f(x) of n variables may have singularities of any integer dimension d in
the range 0, . . . , n − 1. A zero-dimensional singularity is a point of bad behaviour.
A one-dimensional singularity is a curve of bad behaviour. An (n − 1)-dimensional
singularity is a hypersurface of bad behaviour. Wavelets are fully efficient at dealing
with zero-dimensional singularities only. Unfortunately, in higher dimensions, other
kinds of singularities can be present, or even dominant: in typical images, the edges
represent one-dimensional singularities, and there are no zero-dimensional singular-
ities to speak of.
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To be more concrete, consider the function g supported in the unit square

g(x1, x2) = 1{x1+x2>1/2} w(x1, x2), x ∈ R
2, (1.1)

where w(x1, x2) is a smooth function tending to zero together with its derivatives
at the boundary of the unit square. This simple object has a singularity along the
line x1 + x2 = 1

2 . Such an object poses a difficult problem of approximation both for
two-dimensional Fourier analysis and for two-dimensional wavelet analysis. Although
the object is very simple, its wavelet transform does not decay rapidly: as N → ∞,
there are greater than or equal to c · N orthonormal wavelet coefficients exceeding
1/N in size. Its bivariate Fourier series does not decay rapidly either: as N → ∞,
there are � c · N Fourier coefficients exceeding 1/N in size. Neither wavelets nor
Fourier methods perform really well here. For example, if we used either approach as
the basis of transform coders (Donoho 1996), we would have, as a direct corollary of
the fact that at least c ·N coefficients of g have amplitude � 1/N , that the number
of bits one must retain to achieve a distortion less than or equal to ε for wavelet
transform coding grows as ε → 0 at least as rapidly as c · ε−1, and the number of
bits one must retain to achieve a distortion ε for Fourier transform coding grows as
ε→ 0 at least as rapidly as c · ε−1.
In effect, wavelets are being used in image data compression although their theo-

retical properties are not nearly as favourable as one might have imagined, given the
degree of attention they have received.
The concept of intermittency does not have a universal acceptance. We now take

the liberty of identifying this concept as a situation where objects of interest are
typically smooth apart from occasional singularities on, say, a set of measure zero.
From this point of view we can say that wavelets have a role to play in dealing with
a particular kind of intermittency—unusual behaviour at one point (or occasional
points)—but not with every kind of intermittency; in dimension two they already
fail when asked to deal efficiently with unusual behaviour on a line.
We are entitled here to say that wavelets ‘fail’ because we know of representing

systems which, in a precise sense, can succeed in dealing with unusual behaviour on
a line.

(c) Ridgelet analysis

In this paper we describe a recently developed approach to problems of functional
representation—ridgelet analysis. Ridgelet analysis makes available representations
of functions by superpositions of ridge functions or by simple elements that are in
some way related to ridge functions r(a1x1 + · · · + anxn); these are functions of n
variables, constant along hyperplanes a1x1 + · · · + anxn = c; the graph of such a
function in dimension two looks like a ‘ridge’. The terminology ‘ridge function’ arose
first in tomography (Logan & Shepp 1975), and ridgelet analysis makes use of a key
tomographic concept, the Radon transform.
However, multiscale ideas, as found in the work of Littlewood & Paley or Calderòn

(Meyer 1990) and culminating in wavelet theory, also appear as a crucial tool in the
story. From wavelet theory, ridgelet analysis borrows the localization idea: fine-scale
ridgelets are concentrated near hyperplanes at all possible locations and orientations.
As an example of what this family of ideas can do, consider the function g of (1.1).

It will turn out that there are ridgelet expansions—by frames and even by orthonor-
mal sets—having the property that the number of coefficients exceeding 1/N in
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amplitude grows more slowly that Nρ for any positive ρ. In effect, the singularity
in g across the line x1 + x2 = 1

2 has widespread effects in the Fourier and wavelet
representation, but the singularity causes highly concentrated effects in the ridgelet
representation. Moreover, a ridgelet transform coding method, based on scalar quan-
tization and run-length coding, can code such objects with a bit length that grows
more slowly as ε→ 0 than any fractional power of ε−1. Hence ridgelets do for linear
singularities in dimension two what wavelets did for point singularities in dimension
one—they provide an extremely sparse representation; neither wavelets nor Fourier
can manage a similar feat in representing linear singularities in dimension two.

(d) Ridgelets and ridge functions

The ability of ridgelets to give a sparse analysis of singularities is just one point of
entry into our topic. Another interesting entry point is provided by the connection of
ridgelet analysis with the theory of approximation by superpositions of ridge func-
tions. Since the 1970s, it has been proposed that superpositions of ridge functions
could offer interesting alternatives to standard methods of multivariate approxima-
tion. Friedman & Stuetzle (1981) introduced into statistics the topic of ‘projection
pursuit regression’, specifically suggesting that by such means one might perhaps
evade the curse of dimensionality as suffered by then-typical methods of function
approximation. Approximation by superpositions of ridge functions acquired further
interest in the late 1980s under the guise of approximation by single-hidden-layer
feedforward neural nets. In such neural nets, one considers the m-term approxima-
tion

f(x1, . . . , xn) ≈
m∑
i=1

ciσ(ai,1x1 + · · · + ai,nxn).

Celebrated results in the neural-nets literature include Cybenko’s (1989) result that
every nice function of n-variables can be approximated arbitrarily well in a suitable
norm by a sequence of such m-term approximations, and results of Barron (1993)
and Jones (1992) that describe function classes and algorithms under which such m-
term approximations converge at given rates, including specific situations in which
the rates do not worsen with increasing dimension.
Ridgelet analysis provides an alternate approach to obtaining approximations by

superpositions of ridge functions; one which is quantitative, constructive and sta-
ble. Roughly speaking, the earlier theory of m-term ridge-function approximations
assures us only of the existence of superpositions with prescribed features; the theory
of ridgelet analysis, growing as it does out of wavelets and computational harmonic
analysis, goes to a new level, and gives a particular way to build an approximation
which is both constructive and stable. It also gives theoretical insights, previously
unavailable, about those objects which can be well represented by ridge functions.

2. The continuous ridgelet transform

The (continuous) ridgelet transform in R
2 can be defined as follows (Candès 1999).

Pick a smooth univariate function ψ : R → R with sufficient decay and vanishing
mean,

∫
ψ(t) dt = 0. For each a > 0, each b ∈ R and each θ ∈ [0, 2π), define the
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bivariate function ψa,b,θ : R
2 → R

2 by

ψa,b,θ(x) = a−1/2 · ψ((cos θx1 + sin θx2 − b)/a).
This function is constant along ‘ridges’ cos θx1+sin θx2 = const. Transverse to these
ridges it is a wavelet; hence the name ridgelet. Given an integrable bivariate function
f(x), define its ridgelet coefficients

Rf (a, b, θ) =
∫
ψ̄a,b,θ(x)f(x) dx.

Our hypotheses on ψ guarantee that
∫ |ψ̂(λ)|2λ−2 dλ <∞, and we suppose further

that ψ is normalized so that ∫
|ψ̂(λ)|2λ−2 dλ = 1.

Candès (1999) proves the exact reconstruction formula

f(x) =
∫ 2π

0

∫ ∞

−∞

∫ ∞

0
Rf (a, b, θ)ψa,b,θ(x)

da
a3

db
dθ
4π

valid a.e. for functions which are both integrable and square integrable. This shows
that ‘any’ function may be written as a superposition of ‘ridge’ functions. Such
integral representations have been independently discovered by Murata (1996). In
addition, our representation is stable, as we have a Parseval relation:∫

|f(x)|2 dx =
∫ 2π

0

∫ ∞

−∞

∫ ∞

0
|Rf (a, b, θ)|2 da

a3
db

dθ
4π
.

(This relation is, however, absent from Murata’s papers.) This approach generalizes
to any dimension. Given a ψ obeying∫

|ψ̂(λ)|2λ−n dλ = 1,

define ψa,b,u(x) = ψ((u′x− b)/a)/√a and Rf (a, b, θ) = 〈f, ψa,b,u〉. Then there is an
n-dimensional reconstruction formula

f = cn
∫∫∫

Rf (a, b, u)ψa,b,u(x)
da
an+1 db du,

with du the uniform measure on the sphere; and a Parseval relation

‖f‖2
L2(Rn) = cn

∫∫∫
|Rf (a, b, θ)|2 da

an+1 db du.

(a) Relation to Radon transform

The continuous ridgelet transform is intimately connected with the Radon trans-
formation (an excellent reference for the Radon transform is Helgason (1986)). If we
put

Rf(u, t) =
∫
f(x)δ(u′x− t) dx
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2500 E. J. Candès and D. L. Donoho

for the integral of f over the hyperplane u′x = t, then Rf (a, b, u) = 〈ψa,b, Rf(u, ·)〉,
where ψa,b(t) = ψ((t − b)/a)/√a is a one-dimensional wavelet. Hence the Ridgelet
transform is precisely the application of a one-dimensional wavelet transform to the
slices of the Radon transform where u is constant and t is varying.

(b) An example

Let g be the mutilated Gaussian

g(x1, x2) = 1{x2>0}e−x2
1−x2

2 , x ∈ R
2. (2.1)

This is discontinuous along the line x2 = 0 and smooth away from that line. One
can calculate immediately the Radon transform of such a function; it is

(Rg)(t, θ) = e−t2Φ̄(−t sin θ/| cos θ|) t ∈ R, θ ∈ [0, 2π], (2.2)

where

Φ̄(v) ≡
∫ ∞

v

e−u2
du.

We can get immediate insight into the form of the CRT from this formula. Remem-
ber that the wavelet transform 〈ψa,b, e−t2 · Φ̄(−t sin θ/| cos θ|)〉 needs to be computed.
Effectively, the Gaussian window e−t2 makes little difference; it is smooth and of
rapid decay, so it does little of interest; in effect the object of real interest to us is
〈ψa,b, Φ̄(−s(θ)t)〉, where s(θ) = sin θ/| cos θ|. Define then W (a, b) = 〈ψa,b, Φ̄(−t)〉;
this is the wavelet transform of a smooth sigmoidal function. By the scale-invariance
of the wavelet transform,

〈ψa,b, Φ̄(−s(θ)t)〉 =W (s(θ)a, s(θ)b) · |s(θ)|−1/2, for θ ∈ (0, π)

and, of course, a similar relationship holds for (π, 2π). In short, for a caricature of
Rf (a, b, θ), we have, for each fixed θ a function of a and b which is a simple rescaling
of the wavelet transform of Φ̄ as function of θ. This rescaling is smooth and gentle
away from θ = 1

2π and θ = 3
2π, where it has singularities.

We remark that in a certain sense the CRT of g is sparse; if we use a sufficiently
nice wavelet, such as a Meyer wavelet, the CRT belongs to Lp((da/a3) db dθ) for
every p > 0. This is a fancy way of saying that the CRT decays rapidly as one moves
either spatially away from b = 0 or θ ∈ {1

2π,
3
2π} as one goes to fine scales a→ 0.

3. Discrete ridgelet transform: frames

It is important for applications that one obtains a discrete representation using
ridgelets. Typical discrete representations include expansions in orthonormal bases.
Here we describe an expansion in two dimensions by frames (see also Candès (1999),
where the case for all dimensions n � 2 is treated).
We now develop a formula for the CRT of f using the Fourier domain. Obviously,

with f̂ denoting Fourier transform,

Rf (a, b, θ) =
1
2π

∫
¯̂
ψa,b,θ(ξ)f̂(ξ) dξ,

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Ridgelets: a key to higher-dimensional intermittency? 2501

where ψ̂a,b,θ(ξ) is interpreted as a distribution supported on the radial line in the
frequency plane. Letting ξ(λ, θ) = (λ cos(θ), λ sin(θ)) we may write

Rf (a, b, θ) =
1
2π

∫ ∞

−∞
a1/2

¯̂
ψ(aλ)e−iλbf̂(ξ(λ, θ)) dλ. (3.1)

This says that the CRT is obtainable by integrating the weighted Fourier transform
wa,b(ξ)f̂(ξ) along a radial line in the frequency domain, with weight wa,b(ξ) given
by

a1/2
¯̂
ψ(a|ξ|)

times a complex exponential in e−iλb. Alternatively, we can see that the function of
b (with a and θ considered fixed), ρa,θ(b) = Rf (a, b, θ), satisfies

ρa,θ(b) = F−1
1 {ρ̂a,θ(λ)},

where F1 stands for the one-dimensional Fourier transform, and

ρ̂a,θ(λ) = a1/2
¯̂
ψ(aλ)f̂(ξ(λ, θ)), −∞ < λ <∞

is the restriction of wa,0(ξ)f̂(ξ) to the radial line. Hence, conceptually, the CRT at
a certain scale a and angle θ can be obtained by the following steps:

1. two-dimensional Fourier transform, obtaining f̂(ξ);

2. radial windowing, obtaining wa,0(ξ)f̂(ξ), say; and

3. one-dimensional inverse Fourier transform along radial lines, obtaining ρa,θ(b),
for all b ∈ R.

We are interested in finding a method for sampling (aj , bj,k, θj,�) so that we obtain
frame bounds, i.e. so we have equivalence:

∑
j,k,�

|Rf (aj , bk, θj,�)|2 �
∫∫∫

|Rf (a, b, θ)|2 da
a3

db dθ. (3.2)

To simplify our exposition, we will suppose that ψ̂(λ) = 1{1�|ξ|�2} although the
frame result holds for a large class of ψ as exposed in Candès (1999). Guided by the
Littlewood–Paley and the wavelet theories, the scale a and location parameter b are
discretized dyadically, as aj = a02j and bj,k = 2πk2−j . Following (3.1) the ridgelet
coefficients may be written as

Rf (aj , bj,k, θ) =
1
2π

2−j/2
∫

2j�|λ|�2j+1
e−iλ2π2−j

f̂(ξ(λ, θ)) dλ,

and hence, the Plancherel theorem gives
∑
k

|Rf (aj , bj,k, θ)|2 =
1√
2π

∫
2j�|λ|�2j+1

|w2j ,0|2|f̂(ξ(λ, θ))|2 dλ.

In short, at a fixed scale and angular location, the sum of squares of ridgelet coef-
ficients across a varying spatial location amounts to integrating the square of the
Fourier transform along a dyadic segment.
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Discretizing the angular variable θ amounts to performing a sampling of such
segment-integrals from which the integral of |f̂(ξ)|2 over the whole frequency domain
needs to be inferred. This is not possible without support constraints on f , as func-
tions f can always be constructed with f(x) having slow decay as |x| → ∞ so that f̂
will vanish on a collection of disjoint segments without being identically zero. How-
ever, under a support restriction, so that f is supported inside the unit disc (or any
other compact set), the integrals over the segments can provide sufficient information
to infer

∫ |f̂(ξ)|2 dξ.
Indeed, under a support constraint, the Fourier transform f̂(ξ) is a band-limited

function, and over ‘cells’ of appropriate size can only display very banal behaviour.
If we sample once per cell, we will capture enough of the behaviour of this object to
be in a position to infer the size of the function from those samples. The solution
found by Candès (1999) is to sample something like the following with increasing
angular resolution at increasingly fine scales:

θj,� = 2π%2−j .

This strategy gives the equivalence (3.2). It then follows that the collection

{ 2j/2ψ(2j(x1 cos(θj,�) + x2 sin(θj,�) − 2πk2−j)) }(j�j0,�,k)

is a frame for the unit disc; for any f supported in the disk with finite L2 norm,∑
j,k,l

|〈ψaj ,bj,k,θj,l
, f〉|2 � ‖f‖2.

The construction generalizes to any dimension n; in two dimensions, the discretiza-
tion involves the sampling of angles from the circle and in n dimensions the sampling
of angles from the unit sphere. The angular variable is also sampled at increasing
resolution so that at scale j the discretized set is a net of nearly equispaced points
at a distance of order 2−j (see Candès (1999) for details).
The existence of frame bounds implies, by soft analysis, that there are ‘dual

ridgelets’ ψ̃j,k,� so that

f =
∑
j,k,�

〈f, ψ̃j,k,�〉ψj,k,� and f =
∑
j,k,�

〈f, ψj,k,�〉ψ̃j,k,�,

with equality in a an L2 sense, and so that∑
j,k,�

|〈f, ψ̃j,k,�〉|2 �
∑
j,k,�

|〈f, ψj,k,�〉|2 � ‖f‖2
L2 .

At the moment, only qualitative properties of the dual ridgelets ψ̃j,k,� are known; for
example there are no closed-form expressions for their structure.

4. Orthonormal ridgelets in dimension 2

Donoho (1998) had the idea to broaden somewhat the notion of a ridgelet, to allow
the possibility of systems obeying certain frequency/angle localization properties,
and showed that if we allow this broader notion, then it becomes possible to have
orthonormal ridgelets whose elements can be specified in closed form. Such a system
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can be defined as follows: let (ψj,k(t) : j ∈ Z, k ∈ Z) be an orthonormal basis of
Meyer wavelets for L2(R) (Lemarié & Meyer 1986) and let

(w0
i0,�(θ), % = 0, . . . , 2i0 − 1; w1

i,�(θ), i � i0, % = 0, . . . , 2i − 1)

be an orthonormal basis for L2[0, 2π) made of periodized Lemarié scaling functions
w0
i0,�

at level i0 and periodized Meyer wavelets w1
i,� at levels i � i0. (We suppose a

particular normalization of these functions). Let ψ̂j,k(ω) denote the Fourier transform
of ψj,k(t), and define ridgelets ρλ(x), λ = (j, k; i, %, ε) as functions of x ∈ R

2 using
the frequency-domain definition

ρ̂λ(ξ) = 1
2 |ξ|−1/2(ψ̂j,k(|ξ|)wεi,�(θ) + ψ̂j,k(−|ξ|)wεi,�(θ + π)). (4.1)

Here the indices run as follows: j, k ∈ Z, % = 0, . . . , 2i−1 − 1; i � i0, i � j. Notice the
restrictions on the range of % and on i. Let Λ denote the set of all such indices λ. It
turns out that (ρλ)λ∈Λ is a complete orthonormal system for L2(R2).

In the present form the system is not visibly related to ridgelets as defined earlier,
but two connections can be exhibited. First, define a fractionally differentiated Meyer
wavelet:

ψ+
j,k(t) =

1
2π

∫ ∞

−∞
|ω|1/2ψ̂j,k(ω)eiωt dω.

Then for x = (x1, x2) ∈ R
2,

ρλ(x) =
1
4π

∫ 2π

0
ψ+
j,k(x1 cos θ + x2 sin θ)w

ε
i,�(θ) dθ. (4.2)

Each ψ+
j,k(x1 cos θ+x2 sin θ) is a ridge function of x ∈ R

2, i.e. a function of the form
r(x1 cos θ+x2 sin θ). Therefore ρλ is obtained by ‘averaging’ ridge functions with ridge
angles θ localized near θi,� = 2π%/2i. A second connection comes by considering the
sampling scheme underlying ridgelet frames as described in § 3. This scheme says that
one should sample behaviour along line segments and that those segments should be
spaced in the angular variable proportional to the scale 2−j of the wavelet index.
The orthonormal ridgelet system consists of elements which are organized angularly
in just such a fashion; the elements ρ̂λ are localized ‘near’ such line segments because
the wavelets wε

i,�(θ) are localized ‘near’ specific points θi,�.
Orthonormal ridgelet analysis can be viewed as a kind of wavelet analysis in the

Radon domain; if we let Rf(θ, t) denote the Radon transform and if we let τλ(t, θ)
denote the function 1

2(ψ
+
j,k(t)w

ε
i,l(θ) + ψ

+
j,k(−t)wεi,l(θ + π)), the (τλ : λ ∈ Λ) give

a system of antipodally symmetrized non-orthogonal tensor wavelets. The ridgelet
coefficients αλ are given by analysis of the Radon transform via αλ = [Rf, τλ].
This means that the ridgelet coefficients contain within them information about the
smoothness in t and θ of the Radon transform. In particular, if the Radon transform
exhibits a certain degree of smoothness, we can immediately see that the ridgelet
coefficients exhibit a corresponding rate of decay.

5. Ridgelet synthesis of linear singularities

Consider again the Gaussian-windowed half-space (2.1). The CRT of this object is
sparse, which suggests that a discrete ridgelet series can be made which gives a sparse
representation of g. This can be seen in two ways.
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(a) Using dual frames

It can be shown that there exist constructive and simple approximations using
dual frames (which are not pure ridge functions) which achieve any desired rate of
approximation on compact sets (Candès 1998, ch. 5). Indeed, let A be compact and
ψi be a ridgelet frame for L2(A). Out of the exact series

g =
∑
i

〈g, ψi〉ψ̃i, (5.1)

extract the m-term approximation g̃m where one only keeps the dual-ridgelet terms
corresponding to the m largest ridgelet coefficients 〈g, ψi〉; then the approximant g̃m
achieves the rate

‖g − g̃m‖L2(A) � Crm−r for any r > 0,

provided, say, ψ is a nice function whose Fourier transform is supported away from
0 (like the Meyer wavelet). The result generalizes to any dimension n and is not
limited to the Gaussian window. The argument behind this fact is the sparsity of the
ridgelet coefficient sequence; each ridgelet coefficient 〈ψj,k, Rg(θj,�, ·)〉 being the one-
dimensional wavelet coefficient of the Radon transform Rg(θj,�, ·)—for fixed θ. From
the relation Rg(θ, t) = e−t2Φ̄(−t · sin θ/| cos θ|), it is easy to see that the coefficients
〈f, ψa,θ,b〉 decay rapidly as θ and/or b move away from the singularities

(θ = 1
2π, t = 0) and (θ = 3

2π, t = 0).

(b) Using orthonormal ridgelets

Donoho (1998) shows that the orthonormal ridgelet coefficients of g belong to %p
for every p > 0. This means that if we form an m-term approximation by selecting
the m terms with the m-largest coefficients, the reconstruction fm =

∑m
i=1 αλiρλi

has any desired rate of approximation.
The argument for the orthonormal ridgelet approximation goes as follows. Because

orthonormal ridgelet expansion amounts to a special wavelet expansion in the Radon
domain, the question reduces to considering the sparsity of the wavelet coefficients
of the Radon transform of g. Now, the Radon transform of g, as indicated above,
will have singularities of order 0 (discontinuities) at (t = 0, θ = 1

2π) and at (t = 0,
θ = 3

2π). Away from these points the Radon transform is infinitely differentiable,
uniformly so, outside any neighbourhood of the singularities. If we ‘zoom in’ to fine
scales on one of the singularities and make a smooth change of coordinates, the
picture we see is that of a function S(u, v) = |v|−1/2σ(u/|v|) for a certain smooth
bounded function σ(·). The wavelet coefficients of such an object are sparse.

6. Ridgelet analysis of ridge functions

Although ridge functions are not in L2, the continuous ridgelet transform of a ridge
function f = r(x1 cos θ0 + x2 sin θ0) makes sense; if the ridge profile r is bounded,
the transform can be obtained in a distributional sense and obeys

(Rf )(a, b, θ) = δ(θ − θ0) · (Wr(a, b)). (6.1)

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Ridgelets: a key to higher-dimensional intermittency? 2505

Thus, the transform is perfectly localized to the slice θ = θ0 of the precise ridge
direction and it amounts to the one-dimensional wavelet transform of the profile
function there. This exceptional degree of concentration suggests that ridge functions
ought to have very sparse representations by discrete ridgelet systems and that a high
rate of approximation can be obtained via m-term ridgelet approximations to such
ridge functions using simple thresholding. This can be verified in two ways.

(a) Using dual ridgelets

Suppose that the ridge profile r is supported in the interval [−1, 1] and obeys
a sparsity condition on the wavelet coefficients in a nice wavelet basis: the coeffi-
cient sequence β ∈ w%p (p < 2). Then the best m-term one-dimensional wavelet
approximation to r has an L2[−1, 1] convergence rate of order m−(1/p−1/2). There
exist approximations by superpositions of m dual ridgelets (which are not pure ridge
functions) which achieve the L2(A) rate of approximation m−(1/p−1/2), where A
is now the unit disc (Candès 1998, ch. 5 and 7). Such approximants can be con-
structed by selecting the m terms out of the series (5.1) corresponding to the m
largest coefficients.

(b) Using orthonormal ridgelets

A key point about orthonormal ridgelets is that they are not only in L2(R2), but
also in L1(R2); hence the integral defining orthonormal ridgelet coefficients makes
sense for every bounded ridge function. Let the ridge profile r(t) belong to the
homogeneous Besov space Ḃs

p,p(R), where s = 1/p. This means that the best one-
dimensional m-term wavelet approximation to r has an L∞(R) convergence rate of
m−(s−1/p).
Consider now the rate of convergence of thresholded ridgelet expansions. Let

η̄δ(y, x) = y1{y·x>δ} be a thresholding function with a second ‘scaling’ argument
allowing for adjustment of the threshold. For a bounded function f , with

m̄(δ) =
∑
Λ

1{|〈f,ρλ〉|>δ/‖ρλ‖L∞(D)}

finite, set

f̃δ =
∑
Λ

η
(2)
δ (〈f, ρλ〉, ‖ρλ‖L∞(D))ρλ.

In effect, thresholding is driven by the interaction between the size of a coefficient
and the ‘effect’ of the corresponding basis function inside the unit disc.
Let rθ(x) denote the corresponding ridge function of x ∈ R

2. Let f̄m(δ) be the
m̄(δ)-term orthonormal ridgelet approximation to the ridge function f . Then

‖f − f̄m‖L∞(D) � C ·m−(s−1/p), m→ ∞. (6.2)

In effect, this result is ideal, as it gives the same rate m−(s−1/p) we could hope
to obtain by knowing that the underlying approximand was a ridge function in a
specific direction and exploiting that information fully—even though the ridgelet
thresholding does not ‘know’ or ‘exploit’ such information.
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These results suggest that dual ridgelet frames and orthonormal ridgelets, although
not ridge functions, can play the same role in approximation as pure ridge functions.
More precisely, suppose an arbitrary function f is well-approximated by a sequence
of m-term superpositions of ridge functions; it seems that f should also be well
approximated by m-term superpositions from discrete ridgelet systems.

7. Ridge spaces

An important fact about wavelets is their relationship to two special families of
functional spaces—the Besov spaces and the Triebel spaces. Taken together, these
families of spaces include an important collection of classical functional spaces, such
as L2 spaces, Lp spaces, Sobolev spaces, Hölder spaces and so on. Wavelets provide
a special basis for such spaces (an unconditional basis) (Meyer 1990) and provide
near-optimal approximations to elements taken from functional balls of such spaces.
With the existence of a new family of transforms, we have the possibility to ask:

what are the spaces that these transforms are most naturally associated to? Candès
(1998) defines a family of spaces Rs

p,q—‘ridge spaces’—which consist of functions f
with ridgelet coefficients obeying certain constraints:

‖f‖Ṙs
p,q

=
(∫ [∫

|Rf (a, θ, b)|p db dθ
]q/p da

aq(s+1)+1

)1/q

and similarly for higher dimensions where dθ is replaced by the uniform measure
on the sphere and the scale factor aq(s+1)+1 by aq(s+n/2)+1. (The above display cor-
responds to the homogeneous ridge spaces (see Candès (1998) for a corresponding
inhomogeneous version).) Although the definition looks rather internal, it is possible
to give an external characterization of such spaces because of the intimate relation-
ship between the ridgelet analysis and the wavelet analysis of the Radon transform
Rf(u, t). In fact, letting p = q, one can check that

‖f‖p
Ṙs

p,p

� Aveu‖Rf(u, ·)‖p
Ḃ

s+(n−1)/2
p,p

,

where the notation Ḃs+(n−1)/2
p,p stands for the usual one-dimensional homogeneous

Besov norm. From this characterization, it is clear that s is a smoothness parameter
and that both parameters p, q serve to measure smoothness. Here, smoothness has to
be understood in a non-classical way; we are not talking about the local behaviour of
a function but rather about its behaviour near lines (or if one is in dimension n > 2,
near hyperplanes).
To capture the essence of such spaces, let us return to our original mutilated

Gaussian example, (2.1), generalized to dimension n:

g(x1, . . . , xn) = 1{xn>0}e−(x2
1+···+x2

n).

From a classical point of view, in any dimension, this object has barely one derivative
(in an L1 sense) meaning that its first derivative is a singular measure, the singularity
being supported on the plane {xn = 0}. However, under our new definition, this same
object is quite smooth and in fact its regularity increases as the dimension increases,
as explained in Candès (1998). What do typical elements of these new spaces look
like? The mutilated Gaussian is a typical element of Ṙs

1,∞ for s � 1 + 1
2(n− 1).
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For classical Besov spaces, Meyer (1990) tells us that typical elements of Ḃ1
1,1,

for instance, are bumps of various scales and at various locations and that the lat-
ter space is nothing else than the collection of convex combinations of those bumps
(bump algebra). An analogous observation can be made for the ridge spaces (Candès
1998, ch. 4). On the real line, a normalized point singularity σ of degree zero, say,
is a smooth function away from the origin that may or may not have a patholog-
ical behaviour at the origin: that is, we want |σ(t)| � 1 and for a few derivatives
|dmσ(t)/dtm| � |t|−m for t �= 0 and m � M . As an example we have the Heavi-
side 1{x>0}, or a smoothly windowed version of the Heaviside. Next, out of a one-
dimensional point singularity σ, we create a ridge singularity σ(u′x − b), where u
is a unit vector and b a scalar, and consider the set of functions arising as convex
combinations of such ridge singularities:

S =
{
f(x) =

∑
i

aiσi(u′
ix− bi),

∑
i

|ai| � 1
}
.

Then, if we look at objects restricted to the unit ball, the membership of an object in
S is essentially equivalent to a statement about the norm of this object in the norm
Ṙs
p,q for appropriate (s, p, q). More precisely, we have the following double inclusion:

R
1+(n−1)/2
1,1 (C1) ⊂ S ⊂ R1+(n−1)/2

1,∞ (C2), (7.1)

saying that compactly supported objects with R1+(n−1)/2
1,1 norm not exceeding C1 are

convex combinations of ridge singularities, and that every such convex combination
has a bounded Ṙ1+(n−1)/2

1,∞ norm.
It follows from this characterization that ridge spaces model very special conormal

objects: objects that are singular across a collection of hyperplanes and smooth
elsewhere, where there might be an arbitrary number of hyperplanes in all possible
spatial orientations and/or locations.
Earlier, we claimed that ridgelets were naturally associated with the representation

of ridge spaces. In fact ridgelets provide near-optimal approximations to elements of
these spaces, in much the same way that wavelets provide near-optimal approxi-
mations to elements of Besov spaces. For instance, we know that the L2 error of
approximation to a mutilated Gaussian by an m-term linear combination of dual-
ridgelets decays more rapidly than m−r for any r > 0; the space R1+(n−1)/2

1,∞ being
more or less the convex hull of such mutilated smooth objects, it is natural to guess
that ridgelets provide the right dictionary to use for approximating these spaces.
We can make this more precise. Suppose we are given a dictionary D = {gλ, λ ∈ Λ}

and that we are interested in the L2 approximation of a generic class of functions F
out of finite linear combinations of elements of D. For a function f and dictionary
D, we define its m-term approximation error by

dm(f,D) ≡ inf
(αi)m

i=1

inf
(λi)m

i=1

∥∥∥∥f −
m∑
i=1

αigλi

∥∥∥∥,
and measure the quality of approximation of the class F using m selected elements
of D by

dm(F ,D) ≡ sup
f∈F
dm(f,D)
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(the worst case error over F). Then, let us consider the class F of functions whose
Rs
p,q-norm is bounded by some constant C (that will be denoted Rs

p,q(C)), to be
approximated in the metric of L2(A) for some compact set A. We impose the addi-
tional restriction s > n(1/p − 1

2)+ to guarantee that our class belongs to L2 also.
Then, Candès (1998, ch. 5) shows that no reasonable dictionary would give a better
rate of approximation than m−s/d: that is, for any reasonable dictionary,

dm(Rs
p,q(C),D) � Km−s/d.

On the other hand, thresholding the ridgelet expansion gives the optimal rate of
approximation. Namely, if |α|(m) denotes themth largest amplitude among the (|αi|),
the m-term series

f̃m =
∑
i

αi1{|αi|�|α|(m)}ψ̃i

produced by thresholding at |α|(m) achieves the optimal rate

sup
f∈Rs

p,q(C)
‖f − f̃m‖L2(A) � K ′m−s/d,

for some constant K ′ = K ′(A, C, s, p, q).
The result says that we have an asymptotically near-optimal procedure for binary

encoding elements of Rs
p,q(C): let L(ε, Rs

p,q(C)) be the minimum number of bits
necessary to store in a lossy encoding–decoding system in order to be sure that the
decoded reconstruction of every f ∈ Rs

p,q(C) will be accurate to within ε (in an L2
sense). Then, a coder–decoder based on simple uniform quantization (depending on ε)
of the coefficients αi followed by simple run-length coding achieves both a distortion
smaller than ε and a code length that is optimal up to multiplicative factors like
log(ε−1) (Donoho 1996).

8. Ridgelets and curves

As we have said earlier, wavelets are in some sense adapted to zero-dimensional
singularities, whereas ridgelets are adapted to higher-dimensional singularities; or
more precisely, singularities on curves in dimension two, singularities on surfaces in
dimension three, and singularities on (n−1)-dimensional hypersurfaces in dimension
n. Unfortunately, the task that ridgelets must face is somewhat more difficult than
the task which wavelets must face, since zero-dimensional singularities are inherently
simpler objects than higher-dimensional singularities. In effect, zero-dimensional sin-
gularities are all the same—points—while a one-dimensional singularity—lying along
a one-dimensional set—can be curved or straight. Ridgelets are specially adapted only
to straight singularities.
One way to see this is to look at the CRT of a curved singularity. Again in dimen-

sion n = 2, consider the object g′ = e−x2
1−x2

2 · 1{x2>x2
1}. Qualitatively, it is not hard

to see that the Radon transform of such an object has a singularity along a curve,
and not just at a point: that is, in the Radon domain, there is a smooth curve t0(θ)
so that in a neighbourhood of (t0(θ), θ), we have Rg(t, θ) ∼ w(θ)(t− t0(θ))1/2+ for
some smooth function w. When we take the wavelet transform in t along each fixed
value of θ, we will find that the transform is not nearly as sparse as it was with g.
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One can adapt to this situation by the method of localization, which has been
frequently used, for example, in time-frequency analysis. We divide the domain in
question into squares, and smoothly localize the function into smooth pieces sup-
ported on or near those squares either by partition of unity or by smooth orthonor-
mal windowing. We then apply ridgelet methods to each piece. The idea is that, at
sufficiently fine scale, a curving singularity looks straight, and so ridgelet analysis—
appropriately localized—works well in such cases.

9. Discussion

Because of space limitation, the situation in higher dimensions and the structure of
fast ridgelet transform algorithms for lower dimensions, for example, have not been
mentioned in this paper. Information on these and related topics can be found in the
references below.
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